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N Saturation Characteristics of Counterstreaming
- Warm Electrons

I Department of Electrical Engineering and Computer Science
' and the Electronics Research Laboratory

" University of California

¥ Berkeley, CA 94720

- Abstract
’j " _An investigation has been made of the electron-electron two stream instability
k. as the beam temperatures were increased, using particle simulations. Growth rates
o and saturation characteristics were studied and compared to theoretical models.
‘ " The final state of the system, characterized by the value of the distribution function
at zero velocity, f(v = 0), was found to evolve to a Maxwellian in the cold case, and
to a double-peaked distribution stable by the Penrose criterion in the warm case.
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Introduction

Kainer, et. al. [1] observed a transition in the character of the beam plasma in-
stability as the density of the beam was varied relative to that of the plasma. Our
study examines the changes in the electron-electron two stream instability as the
beam temperatures are increased, in search of a similar transition. ES1, a particle
simulation computer code, was run with beam temperatures varying from zero to
s0 warm that no instability occurred. In particular, the program was used to study
the growth rates of unstable modes and observe t_he time evolution of the velocity
~ distribution. The simulation results were compared with theoretical growth rates
and stability condiions. No well-defined transition as observed for the beam-plasma
instability was found.

Theory

The theoretical growth rates of the various modes of the two stream instability are
given by the dispersion relation D(w, k) = 0. This relation can be found by solving
(2]

w, F(v)dv

1= wael v-¢’ (1)

where

=

xl €

and w, is the plasma frequency, defined by
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and F(v) is the velocity distribution function normalized to

/ F(v)dv = 1.
For ihe two stream distribution,
| =(v-w)*y (v +vo)?
F(v)= = \/._ p[———z';] + p[—-z-v‘Tvo—]] , (2)
Eq.( 1) becomes
2
1= FalZ(6)+ 2, 3)
where
-~ .
26)= 225 [ T, )

is the plasma dispersion function [3]. The arguments £; and £; are defined by

and

\/-(E + vo).

There are in general four solutions w(k) of the dispersion relation, given real k,
(£wr, +w;, ) and (£w,, +w;, ). These were found numerically using Muller’s method,
and one of each pair appears in Figure 1 for the example v; = 0.0. For small enough
k, one pair of roots has a positive imaginary part; this is the growth rate of the

mode k. Figure 2 shows this root for several values of v;. The fastest growth rate ,

the mode number of the fastest growing mode and the mode number at which the
growth rate goes through zero are plotted against v in Figure 3.
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The Penrose condition gives an independent determination of the value of v,
above which the two stream distribution is stable and below which it is unstable.

The Penrose condition is that

f(v) - 1) 4,
¢ dv>0 (5)

for stability (4], where f(¢) is a local minimum in the distribution function, f(v),
normalized to '
/ f(v)dv = N.

For the two stream distribution (Eq.( 2)) the local minimum is at ¢ = 0. A numerical
computation using Simpeon'’s rule showed the integral in Eq.( 5) to be positive for
vy 2 0.77v9. Thus the two stream distribution,F(v), is stable if v; > 0.77vg, and
is.unstable otherwise. The solutions of the dispersion relation,w(k) (Eq.( 3)),are
consistent with this result;w(k) shows no growing modes for v, > 0.77vg, but does
show growing modes for v; < 0.77vy.

Simulation

ES1 is a one dimensional, electrostatic particle simulation code developed by A.
Bruce Langdon(S]. Given the initial positions and velocities of a set of charged
particles, ES1 solves for the electric fields on grid pointa (in this case, 128) and
uses the fields to compute new particle positions and velocities. This procedure is
repeated each time step. The code uses periodic boundary conditions; that is, if a
particle leaves one end of the system it will reenter with the same velocity at the

other end. The length of the system used is
207w

l= »
Wy




and the time increment is

Input parameters instruct ES1 to load the particles (typically 8192) into two beams
and within each beam to distribute the velocities in a Maxwellian according to the
thermal velocity apeciﬁed.‘

Linear Results

Logrithmic plots showing the growth of electrostatic field energy in the various
modes are generated by the simulation. Figure 4 contains such plots for rapidly
growing modes for several values of v;. The theoretical growth rates have been
sketched in for comparison. The linear nature of the growth is apparent in the cold
cases, and agrees with the theoretical predictions.

In the warmer cases, an additional effect makes such a .comparison more diffi-
cult. There seems to be an additional contribution to the growth of the electrostatic
energy which grows nonlinearly and with a much greater level of high frequency os-
cillations than seen in the cold cases.The effect becomes more and more dominant as
the value of v; is increased. It has been suggested that because there is an increasing
difference in velocity between the individual particles in the tail of the Maxwellian
as the temperature is increased, perhaps an increasing level of multibeaming be-
tween these tail particles is being observed[6]. Two experiments were conducted to
test this hypothesis. The number of particles waa increased in order to reduce the
velocity spread between particles in the tail of the distribution, resulting in a drop
in the level of the high frequency, nonlinear contribution to the electrostatic energy.

Another test was to observe the evolution of the electrostatic energy of a single

nondrifting Maxwellian. The energy did grow in this case, and the growth looked
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very similar to the corresponding (same v;) two stream case. For large values of
v, the multibeaming instability between the particles-in the tail of the distribution
may make a larger contribution to the field energy than the two stream instability
of the two primary beams. This undesired contribution to the field enery can be
reduced by increasing the number of particles in the simulation (see Figure §), but
for practical numbers of particles the effect still obscures the linear growth for some
values of v;. This study did not go deeper into resolving the multibeaming problem.

Nonlinear Results

As the system evolves in time, depending on the inifial temperature, the two streams
may remain distinct, or particle tmxmg may take place until the original beams are
no longer distinguishable. In the cold case the instability is severe, and the two
stream character is lost. Figure 6a shows plots of the total distribution function, f(v),
for v; = 0 at intervals of twenty time steps. Figure 6b shows plots of the distribution
of velocities of the particles from just one of the original beams at the same time
intervals. After the seventh plot in Figure 6b, the mean velocity has decreased to
zero from its initial value wp = 1. For the very warm example in Figure 7 (v; = 0.7vy,
still unstable by the Penrose criterion) the instability has only a minor effect on the
distribution and the two stream character is retained.

In some of the intermediate cases an additional phenomenon occurs. The resuits
of a simulation for v; = 0.1 are shown in Figure 8. The total distribution oscillates
between a double peaked and single peaked curve centered at v = 0. This is due
to the spiralling of the streams in phase space as seen in the sequence of Figure
9. Eventually, the instability saturates, oscillation is no longer observed and the
distribution function f(v) is left with a single hump.
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In order to study the final state quantitatively, a single parameter is introduced
which indicates the form of the distribution function. Specifically, Ny, the number
of particles with velocity equal to zero (in practice, the number of particles with
velocity in the range —Au < v < Au, where Au < vp) gives a measure of the size
of the dip in the distribution function at v = 0 and thus a measure of the extent to
which the two streams have remained distinct. Given the total number of particles
and the total kinetic energy in the system, a single Maxwellian centered at v = 0 can
be completely specified, and Ny for this theoretical limit can be computed from the
simulation parameters, and is called Nov;a. These two parameters (total number of
particles and kinetic energy) were also used to determine a two stream distribution
with peaks at v = +1. which is marginally stable by the Penrose criterion, allowing
a *heoretical estimate of Np for marginal stability, called Nop.

If the instability completely randomized the particle positions in phase space,
the expected final distribution of velocities would be a single Maxwellian centered
at v = 0. Since a single Maxwellian has no dip at v = 0., this randomization would
result in an upper limit on the value of Ng. Alternatively, if the instability saturated
at the point of marginal stability, a minimum value of Ng would result. The values
of Ng found in the simulations have been compared with these two limits.

Assuming that the form of the distribution function in the saturation state is
bimaxwellian, then the Penrose condition for marginal stability is vy = 0.7Tvgy,
where vy, is the thermal velocity associated with the two beams. Then Ny for the
Penrose stable case (No,) is

_ 2AuN _1(__5_’)2
No,—\/me EAY x5 L (6)
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and for the single Maxwellian,

2AuN
Nom = . 7
om rK/m (@)

(K is the average kinetic energy per particle, and N is the number of particles per
beam.)

Plots of Ng vs. time for various initial temperatures are shown in figure 10.
The values of Np, and Nom have been sketched in for comparison. As expected, No
decreases with.reapect to the theoretical values as the beams are warmed. In the
colder cases, it is somewhere between the two extremes, and in the warmer cases it
is neaf Nop. The large oecillations seen in Ny, particularly for v, = 0.1, are due to
the spiralling of the streams in phase space as described previously.

Conclusion

The dispersion relation for the instability changed smoothly as the thermal velocity
was increased. The growth rates from the simulations agreed with the theoretical
values, to the extent to which they could be obtained. The final shape of f(v) varied
gradually with v; from a single peaked distribution for the cold case to an almost

unchanged double peaked distribution in the warm case. No sudden transitions were

obeerved; i. e., there appears to be no special value of v;/vo.
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APPENDIX A- Calculation of Nom, the number of particles with velocities
in the range —Au < v < Au for a single Maxwellian centered on v = 0 with the
same total number of particles and total kinetic energy as the initial two stream
distribution used in the particle simulations.

In order to compute Nom,, it is necessary to compute the root mean square velocity,
v, of the particles in the single Maxwellian. v, can be found by equating the total
energy of the particles in the single Maxwellian to the total particle energy in the

two stream distribution:
1 2 1 2, .2
5(2N)mvm = §(2N)m(vo + v;). (8)

Thus,

v3, = vd + v (9)

The normalization for the distribution is found by integrating over velocities to

get the total number of particles:
- -y
f_ . Aexp[ﬁ]dv =2N. (10)

N is the number of particles in each beam. The normalization constant is:

N2

A= .
UV

(11)

By integrating the normalized distribution function between —Au and Au, the

number of particles with velocity between these limits can be computed:

fo Au —v?
NOm = ;'—"- ;/;Augxp[Z—vz;]dv. (12)
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Since Au < vy, the integral may be approximated by multiplying the length of the
interval,2Au, by the value of the integrand evaluated at v = 0., resulting in the final

expression

NOm I~ — (13)

The average kinetic energy per particle is thus

K= %mv?n.

APPENDIX B- Calculation of Nop, the number of particles with velocities
in the range —Au < v < Au for a bimaxwellian centered on v = 0 with v, = 0.77
and with the same total number of particles and total kinetic energy as the initial

two stream distribution used in the particle simulations.

This calculation is analogous to that for Nom. The total energy of the particles in a

marginally Penrose stable bimaxwellian is
1 2 .2
NK = é-m(2N) (v,, + vo,)

where K is again the average kinetic energy per particle, v, is the beam velocity and
vip is the thermal velocity. For the marginally stable case, vip = 0.77vgp. Equating

this energy to the total energy given of the particles in the simulations,

%m (2N) (u,’, + ug,) = -;—m (2N) (vg + vf) .

Thus,

v?,,: vg+v,2 =v§+v,2.
(L+(777) 1593
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Figure §: Field energy vs. time for v; = 0.5 for the cases (a) 16384 particles per beam and (b)
65536 particles per beam.
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Figure 1: Dispersion relation for .vg/vo = 0.0. The curve which intersects the w = 0. axis twice
is w;. The other two are w,. For “;"’l > 141, w;is 0.
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[3) B. D. Fried and S. Conte, The Plasma Dispersion Function, Academic (New
York,1961).

(4] Krall, op. cit., p.470.

[5] C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation,
McGraw-Hill (New York,1985).

[6] Ibid., p.394.
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The appropriate Penrose stable distribution is thus

o) = 8 (sxp [0 | sy Lo}

2v;, 2vip

Normalizing to find the constant B,

- ]
Jp(u)du = 2N

J—o0
gives
_ N

Integrate f,(u) between —Au and Au to find Noy:

I A _(u—voy)? _(u+v,)?
Nop = vepV 27 /;A.. (up 2, ] Texp 20,5' o,

B

or
2AuN 3y 2AuN
Nop = ——r] =043 ——=.
» vg,\/21rup[ 2 0 3\/1K7m
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